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A hierarchical interaction theory is presented, which can treat hydrodynamic interactions
among a great number of bodies rigorously in the framework of linear potential theory. After
checking numerical accuracy and convergence for a square array of 64 half-immersed spheres,
the theory is applied to column-supported structures with 1280, 2880, and 5120 equally spaced
circular cylinders as supporting columns. With the computed hydrodynamic and hydrostatic
forces, the motion equation of an upper deck is solved using the mode-expansion method.
Trapped-wave phenomena among a large number of columns are observed at relatively short
waves, and numerical examples of those e!ects on the elastic de#ection of the upper deck and
the wave pattern around column-supported structures are also shown.

( 2000 Academic Press
1. INTRODUCTION

VERY LARGE FLOATING STRUCTURES (VLFSs) are being considered for use as #oating airports,
storage, and manufacturing facilities. Those VLFSs are categorized according to the
con"guration under the sea level into: (i) a pontoon-type VLFS, having a box-shaped
structure with very shallow draft, and (ii) a column-supported-type VLFS, consisting of
a thin upper deck and a great number of buoyancy elements.

A number of studies have been made on the pontoon-type VLFS; e.g. Ohmatsu (1997),
Kashiwagi (1998), Lin & Takaki (1998), and others cited therein. However, it may not be the
case that pontoon-type structures are overwhelmingly advantageous. In fact, Kagemoto
(1995) reported some engineering aspects in favour of a column-supported structure, under
the assumption of the same #exural rigidity in both types of structure. His study was largely
based on an approximate analysis, and therefore more careful study is needed using
a rigorous but e$cient numerical method.

In the case of column-supported-type VLFS, besides the upper deck being #exible due to
its relatively small rigidity, hydrodynamic interactions among a great number of columns
are important in evaluating the di!raction and radiation forces. It is said that the number of
columns could exceed 10 000, and the conventional calculation methods cannot be used
owing to the huge amount of computer memory and computation time required.

In order to surmount this di$culty, a new hierarchical interaction theory is developed in
this paper, which is regarded as an extension of Kagemoto & Yue's (1986) interaction
theory. No matter how many columns are used, the present theory can be applied with
reasonable computation time, and hydrodynamic interactions can be taken into account
rigorously in the framework of linearized potential theory. In the hierarchical scheme,
0889}9746/00/101013#22 $35.00/0 ( 2000 Academic Press
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a great number of actual columns are grouped into several "ctitious bodies and the "ctitious
bodies are grouped further into a certain number of larger "ctitious bodies. This procedure
can be repeated up to any hierarchical level, if necessary. The interactions are then
considered at each level, and information on interactions can be transmitted upward or
downward as required.

The elastic de#ection of an upper deck is represented by a superposition of modal
functions. Then, the hydrodynamic forces acting on supporting columns in response to
speci"ed modes of the deck are computed by the hierarchical interaction theory. With the
computed hydrodynamic and hydrostatic forces, the amplitude of each modal function is
determined by solving the motion equation of the deck by means of a Galerkin scheme.

Recently, Murai et al. (1998) independently developed almost the same theory and
conducted some pilot computations. However, the contributions of evanescent wave com-
ponents were ignored at the outset, and the motion equation of the deck was solved in
a di!erent way: that is, "rstly the elastic de#ection of the deck was represented by
a succession of rigid-body vertical motions of small substructures; and then coupled
equations of motion of the substructures were solved, with hydrodynamic and structural
interactions taken into account. Their investigation seems not to extend to the e!ect of
resonant interactions among many columns whose number is of a realistic order of several
thousands.

In connection with hydrodynamic interactions, some researchers have recently studied
trapped wave phenomena among a certain number of cylinders; e.g. Yoshida et al. (1994),
Maniar & Newman (1997), Evans & Porter (1997), and Utsunomiya & Eatock Taylor
(1998). According to these studies, trapped wave phenomena occur at some speci"c
frequencies when the wavelength is of the same order as the distance between the centrelines
of adjacent cylinders. This wavelength may be short for a realistic column-supported VLFS
but must be studied, because these phenomena may cause detrimental e!ects on elastic
responses of the upper deck. The present paper provides computations for these phe-
nomena, including the wave pattern around column-supported-type structures with 1280
and 5120 equally spaced circular cylinders.

2. FORMULATION

We consider a column-supported VLFS, comprising of a thin deck and a great number of
buoyancy columns. The deck is rectangular in plan, with length ¸ and width B. Theoret-
ically, the geometry and arrangement of elementary columns can be arbitrary, but in this
paper identical and equally spaced columns are considered and each column is a truncated
circular cylinder with radius a and draft d. The centrelines of adjacent cylinders are
separated by a distance 2s in both x- and y-axis of a Cartesian coordinate system, where
z"0 is the plane of the undisturbed free surface and the water depth is constant at z"h
(see Figure 1). Incident plane waves propagate in the direction with angle b relative to the
x-axis. In addition to the global coordinate system, we shall use a local cylindrical
coordinate system (r

j
, h

j
, z), with the origin placed at (x

j
, y

j
, 0), i.e. the centre of the jth

cylinder.
Time-harmonic motions of small amplitude are considered, with the complex time

dependence e*ut applied to all "rst-order oscillatory quantities. The boundary conditions on
the body and free surface are linearized, and potential #ow is assumed.

We then express the velocity potential, governed by Laplace's equation, in the form

U(x, y, z)"
gA

iu
MU

I
(x, y, z)#U

S
(x, y, z)N#

=
+
k/1

i uX
k
U

k
(x, y, z) , (1)



Figure 1. Coordinate system and notations.
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where A is the amplitude of an incident wave, u is the circular frequency, and g is the
gravitational acceleration.

U
I
is the incident-wave velocity potential, which is given by

U
I
"Z

0
(z) e~* ,0 (x #04 b`y 4*/ b) , (2)

where

Z
0
(z)"

cosh k
0
(z!h)

cosh k
0
h

, k
0
tanh k

0
h"

u2

g
,K . (3)

U
S
in equation (1) represents the scattered potential and the sum, U

I
#U

S
"U

D
, is referred

to as the total di!raction potential.
In the radiation component, su$x k refers to the kth mode of motion, which includes not

only rigid-body motions but also a set of &&generalized'' modes to represent elastic de#ec-
tions of a deck. X

k
denotes the complex amplitude of each mode.

Since the deck is very thin compared with other dimensions of the structure, it is enough
to consider only the vertical de#ection. This is expressed in the form

w (x, y)"
=
+
k/1

X
k
f
k
(x, y)"

=
+
r/0

=
+
s/0

X
rs

u
r
(x) v

s
(y) , (4)

where the modal functions in the x- and y-axis, u
r
(x) and v

s
(y), respectively, are the natural

modes for the bending of a uniform beam with free ends. Speci"cally, u
r
(x) can be written as

u
0
(x)"1

2
,

(5)

u
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1
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x
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#
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x

coshi
2r
D ,

u
1
(x)"

J3

2
x,

(6)

u
2r`1

(x)"
1

2 C
sini

2r`1
x

sini
2r`1

#

sinhi
2r`1

x

sinhi
2r`1

D.
Here the coordinate x is normalized with ¸/2 and the same implication will be used
hereafter. The factors i

r
are the positive roots of the equation

(!1)r tani
r
#tanhi

r
"0; (7)
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v
s
(y) can also be written in a similar form, with x replaced by y/b, where b"B/¸, on the

right-hand sides of equations (5) and (6).
Following the notation of Newman (1994), the normal component of the kth modal

function is de"ned as

n
k
"f

k
(x, y) n

z
, (8)

where n
z
is the z-component of the unit normal vector pointing out of the body.

3. DIFFRACTION PROBLEM

3.1. DIFFRACTION CHARACTERISTICS OF A SINGLE BODY

In the interaction theory for a large number of #oating bodies, it is a prerequisite to solve
the di!raction problem of the jth body in a set of &&generalized'' incident waves, de"ned by

Mtj
I
N"G

Z
0
(z) J

p
(k

0
r
j
) e~*phj

Z
n
(z) I

p
(k

n
r
j
) e~*phj H , (9)

where p"0,$1,$2,2,$R, n"1, 2,2,R, and

Z
n
(z)"

cos k
n
(z!h)

cos k
n
h

, k
n
tan k

n
h"!K . (10)

J
p

and I
p

in equation (9) denote the "rst kind of Bessel and modi"ed Bessel functions,
respectively.

The above di!raction problem can be solved with, for instance, the boundary-element
method as shown in Appendix A, and the resulting scattered potentials can be written in the
form

Muj
S
N"[B

j
]TMtj

S
N , (11)

where

Mtj
S
N"G

Z
0
(z)H(2)

m
(k

0
r
j
) e~*mhj

Z
n
(z)K

m
(k

n
r
j
) e~*mhj H , (12)

with m"0, $1, $2,2, $R, and n"1, 2,2,R. H(2)
m

and K
m

are the second kind of
Hankel and modi"ed Bessel functions, respectively. [B

j
]T denotes the transpose of the

matrix [B
j
]. This coe$cient matrix, [B

j
], is referred to as the di!raction characteristics

matrix of the jth body.
Wave forces in response to the &&generalized'' waves may be computed at the same time,

and expressed in the form

MEj
z
N"PP

Sj

Mtj
I
#uj

S
Nn

z
dS"PP

Sj

Muj
D
Nn

z
dS , (13)

where S
j
denotes the surface of the jth body below z"0.

3.2. HIERARCHICAL INTERACTION THEORY

We consider a rectangular array of identical and equally spaced columns, but for conveni-
ence of explanation, only a schematic arrangement of bodies is shown in Figure 2. The



Figure 2. Coordinate systems in hierarchical interaction theory.
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shaded bodies in Figure 2 are actual bodies, which are referred to as bodies at level one.
A number of level-one bodies are grouped to form a "ctitious body, which is at level two,
and several "ctitious bodies are grouped further to form a bigger "ctitious body at level
three. Repeating this hierarchical treatment makes it possible to view the interactions
among a large number of bodies as a succession of simpler interactions due to smaller
number of bodies. To explain the theory, it may be enough to consider only two hierarchical
levels, i.e. l"2 would correspond to the highest level in this case.

Rewriting the incident-wave potential in terms of a polar coordinate system of a "ctitious
body i at level l, we obtain the following:

U
I
"a

i
(k

0
, b)

=
+

p/~=

e*p(b~n@2)M Z
0
(z)J

p
(k

0
r
i
) e~*phiN , (14)

where

a
i
(k

0
, b)"e~*k0(xi #04 b`yi 4*/b) . (15)

With the vector of generalized incident waves de"ned by equations (9), (14) can be expressed
in the form

U
I
"M ai NTMti

I
N , (16)

where MaiN is a vector of coe$cients de"ned by means of equation (14).
According to the Kagemoto & Yue (1986) interaction theory, scattered waves due to

other bodies must be viewed as incident waves upon the body under consideration. Thus,
utilizing the coordinate transformation matrix, [¹

ij
] given in Appendix B, the total
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incident-wave potential on body i at level l is written as

/i
I, l

"AMaiNT#
Nl

+
n/1
nOi

MAn
S, l

NT[¹l

ni
]BMti

I, l
N , (17)

where Nl is the number of "ctitious bodies at level l and MAi
S, l

N is the vector of unknown
coe$cients of the scattered potential due to body i.

Assuming that the di!raction characteristics of a "ctitious body i at level l are obtained
and expressed with the matrix [B

i, l
], the following relation can be established:

/i
S, l

"AMaiNT#
Nl

+
n/1
nOi

MAn
S, l

NT[¹l

ni
]B[Bi, l

]TMti
S, l

N

"MAi
S, l

NTMti
S, l

N . (18)

One can therefore obtain a linear set of equations for determining the unknown coe$cients,
MAi

S, l
N, in the form

MAi
S, l

N![B
i, l

]
Nl

+
n/1
nOi

[¹l

ni
]TMAn

S, l
N"[B

i, l
]MaiN , i"1&Nl . (19)

In reality, however, the matrix [B
i, l

] is also unknown at this stage, because the level l is
"ctitious. To determine this matrix, the di!raction problem of a "ctitious body for the
components of generalized incident waves, Mti

I, l
N, needs to be considered.

A "ctitious body at level l includes Nl~1
bodies at level l!1 (which are actual bodies

here). Thus we must consider again the interactions among these bodies. The local
(downward) expansion of Mti

I, l
N about the origin of body j at level l!1 can be found in

Appendix B. Then, as in equation (17), the total incident-wave potential on body j at level
l!1 is written in the following form:

Muj
I, l~1

N"A[Il~1
ij

]#
Nl~1

+
n/1
nOj

[An
S,l~1

]T[¹l~1
nj

]BMtj
I, l~1

N . (20)

Here, note that the unknown coe$cients for the scattered potential, [Aj
S, l~1

], are given in
a matrix form.

As shown in Section 3.1, the di!raction characteristics of a single body can be given by the
matrix [B

j
], which is regarded as determined, because the level l!1 is the lowest level.

Therefore, in the same manner as in obtaining equation (19), the algebraic simultaneous
equations for the coe$cient matrix [Aj

S, l~1
] can be derived in the form

[Aj
S,l~1

]![B
j, l~1

]
Nl~1

+
n/1
nOj

[¹l~1
nj

]T[An
S, l~1

]"[B
j, l~1

][Il~1
ij

]T, j"1&Nl~1
. (21)

Solving equation (21) means that the di!raction problem at level l!1 is completely
solved. Thus, considering an outer-"eld expression of the corresponding scattered poten-
tials of Nl~1

bodies, the di!raction characteristics of a "ctitious body at level l may be
given. For that purpose, the multipole (upward) expansion of Mtj

S, l~1
N about the origin of

body i at level l must be considered, which is described also in Appendix B. Then, collecting
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the contributions from all bodies inside a "ctitious body, the vector of scattered potentials
can be found as follows:

Nl~1

+
j/1

[Aj
S, l~1

]TMtj
S, l~1

N"
Nl~1

+
j/1

[Aj
S, l~1

]T[Ml

ji
]Mti

S, l
N,[B

i, l
]TMti

S, l
N . (22)

Therefore we have

[B
i, l

]"
Nl~1

+
j/1

[Ml

ji
]T[ Aj

S, l~1
] . (23)

Substituting this di!raction characteristics matrix into equation (19) determines the coe$c-
ient vector of the scattered potential at level l. This completes the description of the entire
#ow "eld.

3.3. WAVE EXCITING FORCE

Since fundamental wave forces due to each component of the generalized incident waves are
already computed and given by equation (13), the only further requirement for computing
the wave-exciting force is to "nd the amplitude of waves impinging upon the actual bodies
at level l!1. This can be done by simply combining equations (17) and (20), with the result

/j
I, l~1

"MAj
D
NTMtj

I, l~1
N, (24)

where

MAj
D
NT"AMaiNT#

Nl

+
n/1
nOi

MAn
S, l

NT[¹l

ni
]BA[Il~1

ij
]#

Nl~1

+
n/1
nOj

[An
S, l~1

]T[¹l~1
nj

]B . (25)

With this notation, the linearized pressure on body j in the di!raction problem is given by
p
D
"!ogAMAj

D
NTMuj

D
N. Therefore, the total wave-exciting force in the mth mode can be

computed as

!PP
SH

p
D

n
m
dS"ogA

NB

+
j/1
PP

Sj

MAj
D
NTMuj

D
Nf

m
(x, y) n

z
dS

KogA
NB

+
j/1

fj
m
MAj

D
NTMEj

z
N,ogAE

m
, (26)

where the de"nition of equation (8) has been used for n
m
, and fj

m
"f

m
(x

j
, y

j
) is treated as

constant on the bottom of an elementary cylinder. N
B
is the total number of actual columns.

4. RADIATION PROBLEM

4.1. RADIATION CHARACTERISTICS OF A SINGLE BODY

In the present study, since only the vertical de#ection is considered, the basic solution
necessary for considering hydrodynamic interactions is that of heave with unit velocity. The
body boundary condition for that problem on the jth body is written as

LUj
R

Ln
"n

z
on S

j
. (27)



1020 M. KASHIWAGI
Several methods exist for solving this radiation problem, and a solution can be written in
terms of the vector of scattered potentials de"ned by equation (12), in the form

Uj
R
"MR

j
NTMtj

S
N . (28)

The coe$cient vector, MR
j
N, is referred to as the radiation characteristics vector for a single

body, which is assumed to be known.
The hydrodynamic forces computed from the above solution are the added-mass and

damping coe$cients. The result of this computation is written as

!PP
Sj

Uj
R
n
z
dS"Aj

zz
!i Bj

zz
. (29)

Here Aj
zz

and Bj
zz

are the added mass and damping coe$cients in heave, respectively, for
a single body j.

4.2. HIERARCHICAL INTERACTION THEORY

The basic concept of the hierarchical scheme is the same as in the di!raction problem. In the
radiation problem, however, let us start by considering the interactions from the lowest
level. Firstly, the body boundary condition for the kth mode of motion of body i at level
l!1 can be speci"ed as

LUi
R,k

Ln
"n

k
"f

k
(x, y) n

z
Kfi

k
n
z
. (30)

Hence, by comparison with equation (27), the solution of Ui
R,k

can be readily given by

Ui
R,k

"fi
k
Ui

R
"fi

k
MR

i
NTMti

S
N . (31)

The radiated wave due to the above motion of body i may be regarded as an incident
wave, when viewed from other bodies included in the same "ctitious body. Taking account
of interactions, the total incident-wave potential on the jth body at level l!1 is expressed as

u j
k, l~1

"

Nl~1

+
n/1
nOj

(fn
k
MR

n
NT#MAn

k, l~1
NT)[¹ l~1

nj
]Mtj

I, l~1
N . (32)

Following the same argument as in obtaining equation (19), a linear set of equations for the
unknown interaction coe$cients, MAj

k, l~1
N, can be obtained in the form

MAj
k, l~1

N![B
j, l~1

]
Nl~1

+
n/1
nOj

[¹l~1
nj

]TMAn
k, l~1

N"[B
j, l~1

]
Nl~1

+
n/1
nOj

[¹l~1
nj

]Tfn
k
MR

n
N ,

j"1&Nl~1
. (33)

Then, by considering an outer-"eld expression of the sum of the forced radiation part plus
the scattered interaction part, the radiation potential due to the kth mode of motion of
a "ctitious body at level l will be obtained. From this, the vector of radiation characteristics
of a "ctitious body can be derived, with the following result:

MRi
k, l

N"
Nl~1

+
j/1

[Ml

ji
]T(fi

k
MR

j
N#MAj

k, l~1
N) . (34)
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Next, let us proceed to the interactions at the upper level l. The analysis may be
undertaken in the same way as that at level l!1, and the total incident-wave potential on
body i at level l can be written as

ui
k, l

"

Nl

+
n/1
nOi

( MRn
k, l

NT#MAn
k, l

NT)[¹l

ni
]Mti

I, l
N . (35)

As shown in equation (23), the di!raction characteristics of body i at level l are given by
the matrix [B

i, l
]. Hence, simultaneous equations for the vector of interaction coe$cients

of the kth mode of motion can be obtained in the form

MAi
k, l

N![B
i, l

]
Nl

+
n/1
nOi

[¹l

ni
]TMAn

k, l
N"[B

i, l
]

Nl

+
n/1
nOi

[¹ l

ni
]TMRn

k, l
N , i"1&Nl . (36)

It is noteworthy that the matrices of in#uence coe$cients on the left-hand side of
equations (21) and (33) are of the same form, and thus can be solved at the same time. The
same is true of the simultaneous equations at level l, i.e. equations (19) and (36).

4.3. HYDRODYNAMIC PRESSURE FORCE

The radiation potential can be divided into two parts: the "rst is due to the forced
oscillation in the absence of other bodies, and the second one is due to radiated waves from
other bodies and re#ected waves. The "rst part is given by equation (31) and the second part
may be obtained from equation (32) and a combination of equations (35) and (20). This leads
to

Uj
k
"fj

k
Uj

R
#MAj

k
NTMuj

D
N , (37)

where

MAj
k
NT"

Nl~1

+
n/1
nOj

(fn
k
MR

n
NT#MAn

k, l~1
NT)[¹l~1

nj
]

#

Nl

+
n/1
nOi

( MRn
k, l

NT#MAn
k, l

NT)[¹l

ni
]A[Il~1

ij
]#

Nl~1

+
n/1
nOj

[An
S, l~1

][¹l~1
nj

]B . (38)

Therefore, the hydrodynamic pressure force in the mth mode due to a superposition of all
radiation modes can be computed as

!PP
SH

p
R

n
m

dS"!ogAK
=
+
k/1
A
X

k
A B

NB

+
j/1
PP

Sj

Uj
k
f
m
(x, y) n

z
dS

,ogAK
=
+
k/1
A
X

k
A BFmk

. (39)

Here F
mk

can be given by substituting equation (37) and then using equations (13) and (29),
with the result

F
mk
"

NB

+
j/1

fj
m
[ f j

k
(Aj

zz
!i Bj

zz
)!MAj

k
NTMEj

z
N] . (40)
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Here again f
m
(x, y) has been assumed constant over the bottom of each cylinder, and

represented by f
m
(x

j
, y

j
)"fj

m
.

4.4. HYDROSTATIC PRESSURE FORCE

Variation of the static pressure due to the deck motion can be expressed by

p
S
"ogw"ogA

=
+
k/1
A
X

k
A B f

k
(x, y) . (41)

Thus, the resulting force in the mth mode can be analytically computed as

!PP
SH

p
S
n
m

dS"!ogA
=
+
k/1
A
X

k
A BC

mk
. (42)

Here

C
mk

KA
W

NB

+
j/1

fj
m

fj
k
, (43)

and A
W

denotes the water-plane area, which is given by na2 for a hemisphere or circular
cylinder.

5. MOTIONS OF AN ELASTIC DECK

The equation of motion of a thin plate is given as

!m
B

u2w(x, y)#D+ 4w (x, y)"!p(x, y) , (44)

where m
B

is the distribution of mass, which is equal to M/¸B in the case of uniform
distribution (M being the total mass), D is the #exural rigidity given by D"EI/(1!l2),
with EI and l being the equivalent sti!ness factor and Poisson's ratio, respectively, and
+"(L/Lx, L/Ly) is the 2-D di!erential operator. Despite a great number of columns being
attached beneath the upper deck, it is assumed that the plate is isotropic and the #exural
rigidity is constant; this is just for simplicity of the analysis.

Since the structure is freely #oating, the bending moment and the equivalent shear force
must be zero along the edge of the plate. That is,

L2w
Ln2

#l
L2w
Ls2

"0,
L3w
Ln3

#(2!l)
L3w

LnLs2
"0 , (45)

where n and s denote the normal and tangential directions, respectively. In the case of
a rectangular plate, a concentrated force, stemming from replacement of the torsional
moment with an equivalent shear force, acts at the four corners, and this must also be zero:

R
f
"2D(1!l)

L2w
LxLy

"0 at x"$1, y"$b . (46)

Substituting equation (4) into equation (44), multiplying both sides by the normal
component of the mth modal function, n

m
"f

m
(x, y) n

z
; m"1, 2,2,R, and integrating

over the structure, we obtain a linear set of equations

=
+
k/1
A
X

k
A B [!K(M@d

mk
#F

mk
)#C

mk
#D@S

mk
]"E

m
, (47)
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where M@"M/2o¸3 and D@"D/og(¸/2)4; d
mk

denotes the Kronecker delta, equal to
1 when m"k and zero otherwise. F

mk
, C

mk
, and E

m
are pressure forces, and these are given

by equations (40), (43), and (26), respectively. S
mk

is the sti!ness matrix, corresponding to the
restoring force due to the structural rigidity.

Up to this point, the free-end conditions (45) and (46) have not been explicitly imposed as
constraints on the solution. However, as shown in Kashiwagi (1998), these conditions can
be satis"ed as natural boundary conditions in the process of transforming S

mk
by partial

integrations. The "nal form of S
mk

to be used in equation (47) is expressed as

S
mk

"PP
SH

+ 2f
m
+ 2f

k
dxdy

#(1!l)P
1

~1
C
Lf

m
Lx

L2f
k

LxLy
!

Lf
m

Ly

L2f
k

Lx2 D
b

~b

dx

#(1!l)P
b

~b
C
Lf

m
Ly

L2f
k

LxLy
!

Lf
m

Lx

L2f
k

Ly2 D
1

~1

dy . (48)

Since the present modal functions are expressed in closed form, all integrals shown above
can be evaluated analytically.

6. RESULTS AND DISCUSSION

6.1. ACCURACY AND CONVERGENCE CHECK

Numerical accuracy and convergence are checked for a square array of half-immersed
spheres with 64 total elements. As shown in Figure 3, 16 bodies in each quadrant are
periodically placed with a half-spacing s/a"2)0, but each group of 16 bodies is separated
on opposite sides of the x- and y-axis by double the distance between adjacent bodies inside
Figure 3. Arrangement of 64 half-immersed spheres.



TABLE 1

Amplitude of wave exciting forces in surge (E
x
) and heave (E

z
) on a body at

(x, y)"(4a, 4a), and the average of total heave force on 64 half-immersed
spheres; h/a"3)0, Ka"0)5, b"1803, s/a"2)0

No. of terms DE
x
D DE

z
D D+E

z
D/N

B

Hierarchical interaction theory (level"3)

N"0 M"12 0)36597 0)70835 0)07340
M"14 0)36579 0)70830 0)07339
M"16 0)36576 0)70828 0)07339

N"1 M"12 0)36576 0)70923 0)07306
M"14 0)36557 0)70918 0)07305
M"16 0)36552 0)70916 0)07305

N"2 M"14 0)36558 0)70918 0)07305

Kagemoto & >ue1s theory (level"1)

N"0 M"3 0)36574 0)70828 0)07339
M"4 0)36574 0)70828 0)07339

N"1 M"4 0)36550 0)70916 0)07305
N"2 M"3 0)36552 0)70916 0)07305

TABLE 2

Added-mass and damping coe$cients in heave of a body at (x, y)"(4a, 4a), and
the average of total heave added mass of 64 half-immersed spheres; h/a"3)0,

Ka"0)5, b"1803, s/a"2)0

No. of terms A
33

B
33

+A
33

/N
B

Hierarchical interaction theory (level"3)

N"0 M"12 0)81751 0)29999 0)57249
M"14 0)81769 0)30000 0)57249
M"16 0)81764 0)30002 0)57246

N"1 M"12 0)82197 0)29881 0)59962
M"14 0)82216 0)29882 0)59961
M"16 0)82211 0)29884 0)59958

N"2 M"14 0)82216 0)29882 0)59961

Kagemoto & >ue1s theory (level"1)

N"0 M"3 0)81763 0)30003 0)57244
M"4 0)81764 0)30003 0)57246

N"1 M"4 0)82211 0)29885 0)59958
N"2 M"3 0)82211 0)29885 0)59963
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the group. The water depth is taken as h/a"3)0, and head waves (b"1803) with wavenum-
ber Ka"0)5 are selected as an example. Tables 1 and 2 show the results of the di!raction
and radiation problems, respectively; listed are the forces on a body at (x, y)"(4a, 4a), as
depicted in Figure 3, and the average of the forces on all 64 bodies.

The hierarchical interaction theory is tested with the highest level set to l"3, in
which 2]2 bodies are grouped at each level. Computed results are compared with the
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corresponding results based on Kagemoto & Yue's (1986) interaction theory. In both tables,
N denotes the number of evanescent modes and M is the number of terms in the azimuthal
angle in equations (9) and (12). The wave-exciting forces are nondimensionalized with
ogA(na2), and the added-mass and damping coe$cients are nondimensionalized with o+
and o+u, respectively, where +"2na3/3.

By comparison with the results of Kagemoto & Yue's theory, the present hierarchical
theory gives converged results to four decimal places with M"14. The need for the larger
number of terms in M is caused by slow convergence of the multipole expansion, shown as
equation (B.4) in Appendix B. Nevertheless, the computation time is small; for example,
only 6 s are needed for the case of N"0 and M"14, using a C200 model of HP
workstation. Another thing to be noted is that the contributions of evanescent modes are
small, and practically those e!ects may be ignored.

In the present computations, the di!raction and radiation characteristics of a single body
are computed by means of a higher-order boundary element method with 9-point Lagran-
gian elements (Kashiwagi & Kohjoh 1995). Furthermore, double symmetries with respect to
the x- and y-axis are exploited, which can reduce the number of unknowns to 1

4
.

6.2. RESPONSES OF A COLUMN-SUPPORTED VLFS

Computations were performed for a practical number of columns, which are identical,
equally-spaced, and attached beneath a thin rectangular deck of ¸"1,200 m and
B"240 m.

The principal particulars of this structure are shown in Table 3. The elementary column
considered here is a truncated circular cylinder and the numbers of columns are 1280, 2880,
and 5120. In computations of these, 2]2 cylinders are grouped as one unit at the "rst and
second levels in the hierarchical theory. At the highest level (l"3), double symmetries with
respect to the x- and y-axis are e!ectively used, which reduces the number of unknowns and
thus the computation time. Despite the increase of column numbers, the displacement
volume is kept constant by decreasing only the diameter. (Thus the draft and the separation
ratio are unchanged and the water-plane area is also the same.)

Figure 4 shows a snap shot taken at t"0 (real part) of the de#ection of Model
A (N

B
"1280) in a regular head wave (b"03) of ¸/j"10. (j is the wavelength in deep

water given by 2ng/u2.) The numbers of evanescent wave and progressive wave modes are
taken as N"0 and M"12, respectively. It should be noted that perfect convergence as in
TABLE 3

Principal particulars of column-supported structures used in calculations

Model A Model B Model C

Length (¸) 1200 m
Width (B) 240 m
Flexural rigidity D"1)0]1010 Nm
Poisson's ratio l"0)3
Number of columns (N

B
) 16]80 24]120 32]160

"1280 "2880 "5220
Diameter of each column (2a) 7)5 m 5)0 m 3)75 m
Draft of each column (d) 3)75 m
Separation ratio (s/a) 2)0
Water depth (h) 18)75 m (h/d"5)0)



Figure 4. Real part of the de#ection of Model A (N
B
"1280) in head wave of ¸/j"10.

Figure 5. Real part of the de#ection of Model C (N
B
"5120) in head wave of ¸/j"10.
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Tables 1 and 2 is not achieved in the present case, probably because a "ctitious cylinder at
level 3 overlaps slightly with adjacent "ctitious cylinders. However, the error caused by this
is believed to be negligibly small; a similar problem was discussed by Yoshida et al. (1993).
In fact, it is con"rmed that the results including the "rst evanescent mode (N"1) are
virtually the same as Figure 4 and the di!erence was not discernable in the "gures.

Regarding the e!ect of increasing the number of modal functions, very good convergence
is con"rmed. To be on the safe side, modal functions in equation (4) are taken up to m"20
and n"5, which are much larger than necessary.

The de#ection of a deck is strongly in#uenced by the rigidity, but compared to a pon-
toon-type VLFS studied by Kashiwagi (1998), the de#ection looks small in the middle part
and relatively large in the downwave end of the plate.

Figure 5 is the result for Model C (N
B
"5120) in the same waves as that for Figure 4; i.e.

¸/j"10 in head waves. Evanescent wave modes are not included, and the number of
progressive wave modes is taken as M"12, which is also the same as in Figure 4.

Surprisingly, computed de#ection patterns are very much the same irrespective of the
number of columns. (Although the result for Model B is not shown here, it is con"rmed to



Figure 6. Surge exciting force on bodies No. 1 and No. 40 along row No. 8 of Model A (N
B
"1280); s/a"2)0,

h/d"5)0, d/a"1)0.

Figure 7. Heave exciting force on bodies No. 1 and No. 40 along row No. 8 of Model A (N
B
"1280); s/a"2)0,

h/d"5)0, d/a"1)0.
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Figure 8. Real part of the de#ection of Model A (N
B
"1280) in head wave of ¸/j"32)59 (Ks"1)28).
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be almost the same as in Figures 4 and 5.) In these computations, the wavelength (¸/j"10)
is large relative to the size of each column, and the displacement volume, #exural rigidity,
and water-plane area are exactly the same. Therefore, the de#ection pattern may be
determined predominantly by the restoring force. However, in short waves whose
wavelength is of the same order as the separation distance between neighboring columns,
hydrodynamic interactions will be intensi"ed by the so-called trapped-wave phenomenon;
this has recently been discussed by Maniar & Newman (1997), Evans & Porter (1997), and
Utsunomiya & Eatock Taylor (1998).

To investigate this phenomenon, the wave exciting forces in surge and heave were
computed for the two representative cylinders in an array of 1280 cylinders (Model A in
Table 3). Figures 6 and 7 show the surge and heave forces, respectively. The dashed line
denotes the results on body No. 1 (which is at the upwave end) and the solid line denotes the
results on body No. 40 (which is at almost the centre) along row No. 8.

We can see that there are many peaks even within a narrow range of wavenumbers. One
distinctive feature is that the surge force acting on a cylinder at almost the centre becomes
very large when the wavenumber is slightly less than KsK1)3. The occurrence of these
many peaks may be caused by a sequence of Neumann- and Dirichlet-trapped modes to be
expected for a large number of equally spaced cylinders.

The wavenumber corresponding to ¸/j"10, adopted in Figure 4, is Ks"0)393, which is
far left of Figures 6 and 7 and thus the interactions are expected to be small.

As an example for resonant hydrodynamic interactions, the de#ection pattern of Model A
was computed at Ks"1)28, and the result is shown in Figure 8. Ks"1)28 corresponds to
¸/j"32)59, and the numbers of modal functions for this case are taken up to m"30 and
n"6 in the x- and y-direction, respectively.

Compared to a longer-wave case of ¸/j"10 shown in Figure 4, the de#ection amplitude
remains small. However, the wavelength in the structural de#ection becomes long, in spite
of a shorter incident wave. A possible reason of this counter-intuitive phenomenon is as
follows: in this particular short wave, the hydrodynamic interaction forces may be more



Figure 9. Real part of the de#ection of Model C (N
B
"5120) in head wave of ¸/j"32)59 (Ks"0)64).
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dominant than the restoring force, and the spatial distribution of interaction forces is
similar to the de#ection pattern shown in Figure 8. It is noteworthy that the vertical
de#ection is caused by the vertical exciting force alone and not connected with the
horizontal surge force. At Ks"1)28, judging from Figure 7, the vertical exciting force may
not be large and this is a reason for the small de#ection.

To check the e!ect of resonant interactions, computations were also performed for Model C
(5120 cylinders) at the same wavelength. Since the radius of an elementary cylinder in Model
C is half the radius of that in Model A and s/a is unchanged, the nondimensional
wavenumber is Ks"0)64 for Model C. At this wavenumber, the variation of the wave "eld
may be di!erent from that in Model A. In fact, the de#ection pattern of Model C shown in
Figure 9 is di!erent from that of Model A and almost zero except near the upwave end.

6.3. WAVE PATTERN AROUND COLUMN-SUPPORTED VLFS

In connection with trapped waves, the wave pattern is one of the great interests for the case
of a large number of cylinders. Waves outside a structure can be computed in terms of the
scattered and radiation potentials at the highest level, with the result

f (x, y)

A
"U

I
(x, y)#

Nl

+
j/1
C MAj

S, l
NTMtj

S, l
N!K

=
+
k/1
A
X

k
A B (MRj

k, l
NT#MAj

k, l
NT )Mtj

S, l
ND , (49)

where U
I

is given by equation (2) and other coe$cients and functions are already deter-
mined in Sections 3 and 4.

Firstly, the wave pattern at ¸/j"10 is shown in Figure 10. It is con"rmed that this
pattern is the same irrespective of the number of columns and that the e!ects of evanescent
waves and structural de#ection are also negligibly small. We can see in Figure 10 that the
re#ection from the bow is small and the wave amplitude along the side of the structure
decreases.



Figure 10. Wave pattern around Model A in head wave of ¸/j"10, which is the same as those of Models B and C.
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Next, the wave pattern at Ks"1)28 (¸/j"32)59) around Model A, comprising 1280
cylinders, is shown in Figure 11. Likewise, Figure 12 shows the wave pattern around Model
C (5120 cylinders) at the same wavenumber. In order to elucidate the wave height along the
longitudinal side, the structural de#ection on the deck is not shown.

Interestingly, the amplitude increases along the longitudinal side in Model A and there
exist resonant waves whose crest line is almost perpendicular to that of the incident wave.
These facts are connected with trapped waves among a great number of cylinders. In Model
C, large amplitude waves still exist downstream of the structure, but the wave pattern is
markedly di!erent from that of Model A.

7. CONCLUSIONS

By using a newly developed hierarchical interaction theory, column-supported-type VLFSs
were studied, with emphasis placed on hydrodynamic interactions among a large number of
columns. Three di!erent numbers of equally spaced circular cylinders were considered as
supporting columns; these were 1280, 2880, and 5120 cylinders, but the total displacement
volumes and water-plane areas were kept constant.

In the results for ¸/j"10, di!erences in the upper-deck de#ection were very small
among those three cases. This is probably because the interactions were small at this longer
wavelength and the restoring force was dominant in the motion equation.

At shorter wavelengths, resonant phenomena were observed, which may be connected
with trapped modes of Neumann and Dirichlet types, studied by Maniar & Newman (1997)
for a single row of cylinders. In this wavelength region, the hydrodynamic interaction forces



Figure 11. Wave pattern around Model A (N
B
"1280) in a wave of ¸/j"32)59 coming from the right upper side.

Figure 12. Wave pattern around Model C (N
B
"5120) in a wave of ¸/j"32)59 coming from the right upper side.
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are more dominant than the restoring force, and the intensity and spatial distribution of the
interaction forces vary depending on the ratio of the wavelength to the separation distance
between adjacent cylinders. Therefore, as expected, the structural de#ection was di!erent
between two structures supported by 1280 and 5120 cylinders.

The wave patterns around these two structures were also computed and their distinctive
features associated with trapped-wave phenomena were shown in "gures.
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APPENDIX A: DIFFRACTION CHARACTERISTICS

Let us consider the di!raction problem of the jth body in an elementary wave of &&generalized''
incident-wave vector de"ned by equation (9), and let the velocity potential of an elementary wave and
the corresponding scattered potential be denoted by tj

I
(x, y, z) and uj

S
(x, y, z), respectively.

We note that tj
I
(x, y, z) satis"es Laplace's equation and the free-surface and bottom conditions. In

addition, uj
S
(x, y, z) satis"es the radiation condition at in"nity as well. Therefore, we can prove with

Green's theorem that the total di!raction potential, uj
D
"tj

I
#uj

S
, is a solution of the integral

equation

C(P)uj
D
(P)#PP

Sj

uj
D
(Q)

L
Ln

Q

G(P; Q) dS"tj
I
(P), (A.1)

where C(P) is the solid angle, P"(x, y, z) is the "eld point, Q"(x@, y@, z@) is the integration point, and
L/Ln

Q
denotes the normal derivative with the positive normal directed out of the body.



INTERACTIONS AMONG A GREAT NUMBER OF COLUMNS 1033
G(P;Q) is the Green function, which can be expressed as

G(P; Q)"
i
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where
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, (A.3)

and other notations are de"ned in equations (3) and (10).
H(2)

0
and K

0
in equation (A.2) are the second kind of Hankel and modi"ed Bessel functions,

respectively. These functions can be recast in the series-expansion form by expressing
x#iy"r exp(ih) and x@#iy@"r@ exp(ih{) and by utilizing the addition theorem of Bessel functions.
Considering the case of "eld point P in the #uid, C(P)"1 and r'r@. Therefore, from equations (A.1)
and (A.2), we can obtain the following representation of the scattered potential:
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A set of coe$cients MBj
m0

, Bj
mn

N represents the di!raction characteristics corresponding to the
elementary wave tj

I
(P). By considering the di!raction problems for all elementary waves of Mtj

I
N in

the same manner, we can construct the matrix of the di!raction characteristics; this is denoted as
[B

j
]T in equation (11).

It should be noted that there is no need to compute the normal velocity of the incident wave in
equation (A.1), and the solution of equation (A.1) is the total di!raction potential which can be directly
used for computing equation (A.5) and the vector of elementary wave forces de"ned by equiation (13).

APPENDIX B: GRAF'S ADDITION THEOREM

Summaries are given below of Graf 's addition theorems to be used in the hierarchical interaction
theory.

In analyzing interactions at the same level, it is necessary to rewrite the scattered potential of body
i with a coordinate system "xed at body j. In this case, as shown in Figure B1, r

j
(¸

ij
and thus the

following relations hold:
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where J
p

and I
p

denote the "rst kind of Bessel and modi"ed Bessel functions, respectively, and
H(2)

m
and K

m
are the second kind of Hankel and modi"ed Bessel functions, respectively.



Figure B1. Symbols used in the multiple scattering problem
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The above two equations can be expressed in a matrix form

Mti
S
(r
i
, h

i
, z)N"[¹

ij
] Mtj

I
(r
j
, h

j
, z)N . (B.3)

Here [¹
ij
] is the coordinate transformation matrix, and the vectors on the left- and right-hand sides

are de"ned in equations (12) and (9), respectively.
For the case of r

j
'¸

ij
in Figure B1, relations (B.1) and (B.2) must be modi"ed, giving the following:
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These equations can be expressed in the form

Mti
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, z)N. (B.6)

This can be regarded as the multipole expansion of the scattered potential of body i around the origin
of the jth coordinate system, and thus [M

ij
] is called the multipole expansion matrix.

Lastly, let us consider the local expansion of the vector of generalized incident waves around the
origin of the jth coordinate system. In this case, the following relations hold for all values of r

j
and ¸

ij
:
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These can be written in the following form:
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Here [I
ij
] is the local expansion matrix, which is used in the downward transmission of the

generalized incident-wave vector in the hierarchical di!raction problem.
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